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Abstract
Online users have generated a large amount of
health-related data on medical forums and search
engines. However, exploiting these rich data for ori-
enting patient online and assisting medical check-
up offline is nontrivial due to the sparseness of
existing symptom-disease links, which caused by
the natural and chatty expressions of symptoms. In
this paper, we propose a novel and general repre-
sentation learning method CONTEXTCARE for hu-
man generated health-related data, which learns la-
tent relationship between symptoms and diseases
from the symptom-disease diagnosis network for
disease prediction, disease category prediction and
disease clustering. To alleviate the network sparse-
ness, CONTEXTCARE adopts regularizations from
rich contextual information networks including a
symptom co-occurrence network and a disease evo-
lution network. Extensive experiments on medical
forum data demonstrate that CONTEXTCARE out-
performs the state-of-the-art methods in respects.

1 Introduction
With the prevailing of Web 2.0 applications, an increasing
number of individuals are seeking diagnostic aids online. As
reported, 33% American adults went online to figure out what
medical conditions they might have [Fox and Duggan, 2013]
and 5% google searches are healthcare related [Joshi, 2017].
To get online diagnostic aids, individuals can either search
symptom related queries or ask questions on medical forums
such as PatientsLikeMe and Haodf [Baike, 2017]. In the for-
mer scenario, part of users would click returned documents of
diseases according to their symptoms, which generates links
between diseases and symptoms. In the latter scenario, medi-
cal experts or patients with the same symptoms would help to
explain what’s going on with one’s body on medical forums,
which generate plenty of symptom-disease links as well.

Can we leverage these large amounts of medical forum da-
ta and heath related query logs to orient patient online and
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Figure 1: Three contextual information networks from online medi-
cal forum for disease prediction. Each node of top layer is a symp-
tom description and each node of bottom layer is a disease de-
scription. The symptom-disease diagnosis network seriously suffers
from the sparseness. However, the symptom co-occurrence network
and disease evolution network that carry rich contextual information
from the patient side can be used to alleviate the sparsity.

assist professional clinical checkup offline? Are these links
between textual symptoms and textual diseases good enough
to use directly? Unfortunately, symptoms in both queries and
medical forum posts are usually informally expressed with
narrative language. Especially on medical forums, symptom-
s and diseases, which are in rounds of QAs, are usually too
natural and chatty instead of professional and brief. As a con-
sequence, symptoms with similar literal meanings or medical
implications are usually expressed in different narrative ways,
leading to very sparse links between symptoms and diseases.

In order to enhance the utility of the rich online medical fo-
rum data for disease prediction, as mentioned above, we have
to face challenges of the serious issue of sparseness, that are,
1) the number of descriptions of symptoms and diseases is in
thousand-level due to the variety of symptoms and diseases
and the diversity of natural language expressions for symp-
toms, 2) the number of symptom-disease links is relatively
small. For example, the sample on our data indicates that the
density of the symptom-disease network is only 0.07%.

To address the sparsity problem, we propose a new idea of
using the rich contextual information of diseases and symp-
toms to bridge the gap between disease candidates and symp-
toms, and detach it from the specific way of implementing the
idea using network embedding. Specifically, we create a two-
layer network which consists of a bipartite diagnosis network
and the following two homogeneous networks. (see Figure 1).
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Figure 2: Our CONTEXTCARE method that learns effective latent
features of symptoms and diseases. We adopt the diagnosis network
to learn the representations as the main term, and we use the symp-
tom co-occurrence network and disease evolution network to regu-
larize the representations to alleviate the sparseness of the symptom-
disease diagnosis network.

• Symptom co-occurrence network. A patient may have
multiple symptoms. We spot co-occurrence of the symp-
toms, for instance, headache and high blood pressure.
• Disease evolution network. A patient may report the dis-

ease co-occurrence or evolution that they know from the
experts online or clinicians offline. We observe the evo-
lution of the diseases, for example, tuberculosis increas-
es the risk of lung cancer.

We believe that these two networks can highly mitigate the
sparsity of bipartite diagnosis network. To make use of those
two networks as contextual information for accurate disease
prediction, we propose a novel method, CONTEXTCARE, to
integrate the three networks of different aspects but rich infor-
mation. The basic ideas of CONTEXTCARE are 1) the linked
disease and symptom in the bipartite diagnosis network
should be closer in a certain way; 2) frequently co-occurred
symptoms should be closer in representation; 3) evolution-
ary diseases should be closer in representation. Compacting
symptoms in 2) and diseases in 3) both benefit alleviating the
sparsity of the bipartite diagnosis network. By encoding all
these aspects, our CONTEXTCARE utilizes information from
the three networks to facilitate the predictive model. CON-
TEXTCARE takes the sparse symptom-disease diagnosis net-
work as the main term in the objective function and adopts the
contextual information including the symptom co-occurrence
and disease evolution as regularization terms (see Figure 2).

It is worthwhile to highlight our contributions as follows.
• Important problem and new idea. We leverage the rich

medical QA posts from online medical forums for dis-
ease prediction and patient guidance with informally ex-
pressed symptoms, which could benefit diagnostic aids
online and offline. To deal with the sparseness of diag-
nosis network, we propose CONTEXTCARE to integrate
the diagnosis network, symptom co-occurrence network
and disease evolution network for learning the latent rep-
resentations of symptoms and diseases.
• Effectiveness in real data. Experiments on medical fo-

rum data demonstrate that CONTEXTCARE outperforms
the state-of-the-art methods in disease prediction on t-
housands of classes, with a 23.1% relative improvement.

2 Problem Statement
We define the networks get from online medical forums and
the problem studied in this work.

DEFINITION 1 (Symptom-Disease Diagnosis Network)
The network, denoted as GSD = (S ∪ D,E), is a bipartite
network that captures the relation between patient’s symp-
toms Sp and the corresponding disease d. S is the set of
symptoms and Sp ∈ S. D is the set of diseases and d ∈ D.
E ⊂ S × D is the set of symptom-disease links extracted
from the diagnosis by doctors and experts.

The symptom-disease diagnosis network which consists of
relationships between symptoms and disease is the essential
resource for disease prediction. However, the extremely spar-
sity of paths in this bipartite network is an absolute disaster
for any prediction models. In order to alleviate the sparseness
of the symptom-disease diagnosis network, we introduce the
following two networks.

DEFINITION 2 (Symptom Co-occurrence Network) This
network is denoted by GSS = (S,Eco), where S is the set of
symptoms and Eco ⊂ S × S is the set of symptom-symptom
co-occurrence links whose frequency is beyond a threshold
τ . Each (si, sj) ∈ Eco indicates that symptom si and sj
co-occurred above τ times.

DEFINITION 3 (Disease Evolution Network) This network
is denoted byGDD = (D,Eev), whereD is a set of diseases,
and Eev ⊂ D × D is the set of disease-disease evolution
links. Each (dm, dn) ∈ Eev indicates that disease dm and dn
are evolutionary diseases.

Given these definitions, we can formally formulate the
problem studied in this work.

PROBLEM 1 (Representation Learning) Given the sparse
network GSD and rich contextual information from networks
GSS and GDD, find the latent representation s of symptom s
and d of disease d.

It is a fundamental problem towards disease prediction, since
the prediction performance highly depends on the quality of
the latent features we learn.

3 The CONTEXTCARE Method
We introduce details of the proposed representation learning
method (CONTEXTCARE) in this section. This model oper-
ates in bipartite symptom-disease diagnosis network learning
and makes use of symptom-symptom co-occurrence network
and disease-disease evolution network as the constraints of
the bipartite network learning.

3.1 Bipartite Symptoms-Disease Network
Learning

Given the bipartite symptom-disease networkGSD, it is quite
appealing to learn latent representations of vertices via mod-
eling symptom-disease paths. The underlying assumption of
the embedding method is that the disease can be represented
with its relationships with symptoms and vice versa, which
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derives from [Bordes et al., 2013]. It is implemented by tak-
ing the symptom-disease relationship as a transition t. Specif-
ically, We define a simple energy function f(Sp, d) on each
(Sp, d) as follows.

f(Sp, d) =

∥∥∥∥∥ 1

|Sp|
∑
s∈Sp

s+ t− d

∥∥∥∥∥
1

(1)

We are using an `1 norm in the latent space, but other met-
rics could be used as well. We take the symptom-disease as a
transition vector t. True symptoms-disease pairs (Sp, d) are
assumed to have low energies in the energy function. For each
true symptoms-disease pair, we generate a contrast via sam-
pling a negative pair with normal distribution and make any
deviation from (Sp, d) as costly as possible. It is worth to
mention that we also try another energy function, which con-
siders the transition between symptoms and disease as multi-
plying a matrix, as a baseline model.

To learn the symptom embeddings {s}, the disease embed-
dings {d} and the transition vector t, we consider a ranking
criterion. Intuitively, given a true pair (Sp, d), if the disease
d is missing, we would like the model to be able to predict
the correct disease. The objective of training is to learn the
energy function f so that it can successfully rank the true pair
(Sp, d) to be preceded all other possible pairs. Therefore, we
define a loss to formalize this intuition:

L(GSD) =
∑

(Sp,d)∈M+

(Sp′ ,d′)∈M−

[γ + f(Sp, d)− f(Sp′ , d
′
)]+ (2)

where M+ is the set of true (Sp, d) pairs found in the on-
line medical QA pairs from medical forums, M− contain-
s corrupted pairs constructed by replacing the symptom set
or the disease in the true (Sp, d), γ > 0 is a margin sep-
arating true symptom-disease pairs and corrupted pairs, and
[x]+ = max(0, x) denotes the positive part of x.

3.2 Regularization of Symptom Co-occurrence
Beyond learning the bipartite symptom-disease diagnosis net-
work, CONTEXTCARE also exploits symptom-symptom co-
occurrence network GSS as the constraints to alleviate the s-
parseness of the bipartite network for more accurate represen-
tations of symptoms, thus benefits disease prediction. Hence,
we define the `1 penalty over frequently co-occurred symp-
toms, ‖si − sj‖1, defines the symptom-symptom regulariza-
tion. It incentivizes the vector representations of frequently
co-occurred symptoms to be close, the larger wij , the greater
penalty.

R1 (G
SS ) =

∑
(si,sj)∈Eco

wij‖si − sj‖1 (3)

where wij =
|Γ(si)∩Γ(sj)|
|Γ(si)∪Γ(sj)| is the Jaccard similarity be-

tween symptoms si and sj , Γ(si) and Γ(sj) denote the set of
neighbors of symptom si and symptom sj in the symptom-
symptoms co-occurrence network with frequency respective-
ly. Note that we consider the frequency of the edge between
neighbors when counting Γ(s), i.e., we take a symptom sj as
a neighbor of si when the co-occurrence frequency of si and
sj is beyond a threshold τ .

By minimizing R1 (GSS ), the representations of symptoms
which encode contextual information lead to close represen-
tations of symptoms with similar meanings or implications.

3.3 Regularization of Disease Evolution
Our model considers the disease evolution as a very important
contextual information of diseases for alleviating the sparse-
ness of bipartite symptom-disease diagnosis networkGSD. In
order to make full use of the explicit and implicit information
involved in disease evolution, we define the `2 penalty over
the difference on evolutionary diseases, ‖dm−dn‖2, defines
the disease evolution regularization. It incentivizes the vector
representations of diseases which are different stages of the
same patient to be close, the larger vmn, the greater penalty.

R2 (G
DD) =

∑
(dn,dm)∈Eev

vmn‖dn − dm‖2 (4)

where vmn = |Γ(dn)∩Γ(dm)|
|Γ(dn)∪Γ(dm)| is again the the Jaccard similar-

ity, Γ(dn) and Γ(dm) denote the set of neighbors of disease
dn and disease dm in the disease evolution network respec-
tively. Note that we make use of `2 on evolutionary diseases
rather than `1 like the penalty on co-occurred symptoms. The
reason is 1) we want treat these two kinds of relations differ-
ently and 2) put more emphasis on disease evolution because
of more significant effect on compacting diseases.

The evolution of diseases is used as the constraint for learn-
ing more accurate representations of diseases, thus benefits
disease prediction. Disease evolution is the knowledge of the
progression and change directions of disease. By encoding
disease progression and direction in them, disease represen-
tations are given the potential to predict different variation-
s of the diseases and long-term diseases given initial symp-
toms of patients. The constraint of disease evolution is also
good for compacting symptom representations because ap-
proximating those evolutionary diseases will indirectly lead
to approximate those symptoms which should be compact-
ed. Therefore, by minimizing R2 (GDD), the representations
of disease which encode contextual information lead to close
representations of diseases which are similar in the medical
sense and also benefit condensing similar symptoms.

3.4 Latent Representation Learning
Towards the goal of learning representations of symptom-
s and diseases, the final objective loss of our model com-
bines symptom-disease bridging loss, symptom-symptom co-
occurrence loss and disease-disease evolution loss 2, 3 and 4,
which is minimized as follows:

min
{s},{d},t

L(GSD) + αR1 (G
SS ) + βR2 (G

DD) (5)

where α > 0 and β > 0 are both parameters which weight
the regularizations. This proposed model directly bridges
symptoms and diseases. Besides, it extends to incorporate
symptom-symptom co-occurrence and disease-disease evolu-
tion as constraints for learning symptom and disease repre-
sentations onto a latent space. This model can capture long-
term influence from one disease to another by strengthen-
ing evolution between diseases. The frequently co-occurred
symptoms are also grouped close to each other. All these two
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aspects benefit bridging symptoms with diseases. The opti-
mization in Eq. (5) favors lower energies for true symptoms-
disease pairs than corrupted pairs, and is thus a natural imple-
mentation of the intended criterion. The optimization is car-
ried out by stochastic gradient descent in mini-batch mode.
We enforce the constraints that the embedding of each node
‖s‖ = 1 and ‖d‖ = 1 to avoid overfitting. The computational
complexity approximates to O(TNK), where N is the num-
ber of iterations, N the number of cases, K the number of
symptoms in each case.

4 Experiments
4.1 Dataset
We conduct experiments on a real Chinese medical QA nar-
rative data from an online medical forum, i.e., Haodf [Baike,
2017]. From the online medical QA posts of each patient, we
have a set of symptoms in narratives, diagnosed diseases giv-
en by online experts. Except for the historical diseases pro-
posed by the patient initially, the evolution of diseases can be
easily obtained from multiple rounds of QA in each post. In
our dataset, there are 17,803 medical QA posts with 18,899
symptoms and 1,066 diseases in total. We split all medical
QA posts into a training/validation/test set randomly, with the
ratio of 8:1:1. The first part is for training model, the second
for hyper-parameter tuning, and the third for evaluation. Ac-
cording to ICD-10, the 1,066 diseases are assigned to 9 cat-
egories, which is to evaluate disease category prediction and
clustering. In order to get symptom phrases, we leverage a
medical dictionary and a unified pre-processing platform for
Chinese [Che et al., 2010] to recognize symptom related noun
phrases and verb phrases.

4.2 Baseline Methods
Classification Models. Disease prediction by taking symp-
toms as binary features is a typical muti-label classification.
Here, we take SVM [Chang and Lin, 2011], Decision Tree
[Breiman et al., 1984] and MaxEnt [Berger et al., 1996] as
baselines. However, these baselines just take the one-hot fea-
ture of symptoms thus suffer from the sparsity of symptoms.

Topic Modeling Method. The well-established Laten-
t Dirichlet Allocation (LDA) model [Blei et al., 2003] has
been applied to get phenotypes for diagnosis code predic-
tion [Perotte et al., 2011]. Therefore, we take LDA [Blei et
al., 2003] to learn the symptom distribution and the disease
distribution for disease prediction by regarding symptoms as
words and diseases as documents.

Link Prediction Models. Researchers have proposed a
few methods that can predict the links between symptoms
and disease with the diagnosis network GSD. P-PageRank
prefers those popular diseases and therefore tends to take
popular diseases as predictions. SimRank [Jeh and Widom,
2002] links a disease d and a symptom s by considering
the links between the neighbor diseases of d, i.e., Γ(d) and
neighbor symptoms of s, i.e., Γ(s). However, it is inflex-
ible to link those diseases and symptoms with few neigh-
bors and suffer from the sparseness of symptom-disease
links. HeteSim [Shi et al., 2014] learns links between dis-
eases and symptoms by walking on the GSD through the

path [disease→disease→symptom→symptom]. However, it
is insufficient to deal with latent relations thus suffers from
the sparseness of symptom-disease diagnosis network. These
methods are both designed for one-to-one link prediction in-
stead of one-to-many relationship prediction as our task. In
order to fit our many-to-one prediction task, we extend these
methods to combine one-to-one links by voting.

Network Embedding Methods. Representing diseases
and symptoms into latent spaces is a more flexible way to
bridge the gap of disease and symptoms. LSHM [Jacob et al.,
2014] learns a classification function meanwhile takes into
account that neighbor symptoms or diseases should be close.
The idea behind is that two diseases or symptoms which are
connected in GSD will tend to share similar representations.
However, it deals with evolutionary diseases and co-occurred
symptoms in the same manner and treats every disease evolu-
tion and symptom co-occurrence with the same importance,
which might limit the predictive performance. The LSHM is
also designed for dealing with one-to-one similarity compu-
tation rather than many-to-one. Therefore, we leverage voting
to meet with the many-to-one mode. ContextCare× is a vari-
ation of our CONTEXTCARE by taking the symptom-disease
relationship as a transition matrix T in ContextCare× rather
than a transition vector t.

We considered the work on QA embedding by Bordes et
al. [Bordes et al., 2014], however, mapping entity names in
questions to subgraphs of KBs is undoable in our narrative-
data case. In their design, the question and the subgraph must
share at least one entity. In this way, it is reasonable that ques-
tions and answers share the same embedding matrix. Howev-
er, in our dataset, symptoms and the corresponding disease do
not share even a word in most cases.

4.3 Implementation Details
For baselines, we tune hyper-parameters for best results. For
our methods, we select the learning rate λ for stochastic gra-
dient descent among {0.001, 0.01, 0.1}, the margin γ among
{1, 2, 10}, and the latent dimension k among {10, 20, 30, 40,
50} on the validation set. Optimal configurations for CON-
TEXTCARE are k = 40, λ = 0.01, γ = 1, α = 0.35, β = 0.55.
Training is limited to at most 1,000 epochs over the train-
ing set. The best models are selected by early stopping on
the validation sets. We conducted multiple rounds of cross-
validation to avoid the issue of time sensitivity.

4.4 Evaluation Criterion
For disease prediction and disease category prediction, we
use accuracy to evaluate results. For those methods which can
generate ranking lists, we use Precision@5 and Precision@10
to check the proportion of correct diseases located in the top
5 and 10. For each given set of symptoms, our model gives
a ranking list of diseases. The prediction accuracy, that e-
quals as precision@1, along with other precision@k metrics
can well evaluate the performance. Recall (and f-score) is not
sensitive in the task: one disease is often connected to only
one symptom; so, if precision@k increases, recall increases
as well. For disease category prediction, we re-train the clas-
sification models for 9 classes according to ICD-10. Rand in-
dex (RI) [Rand, 1971] is taken to evaluate the performance of
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Method Accuracy Precision@5 Precision@10Diagnosis Network +Co +Ev +Co,Ev
SVM (linear) 16.02 - - - - -
SVM (RBF) 16.79 - - - - -
Decision Tree (C4.5) 17.31 - - - - -
MaxEnt 18.98 - - - - -
LDA 14.73 - - - 23.46 35.21
P-PageRank 17.22 19.71 17.25 19.74 43.17 62.16
SimRank 19.36 21.97 19.38 21.98 46.52 64.33
HeteSim 20.62 23.03 20.69 23.32 55.31 70.48
LSHM 21.38 25.87 22.55 25.77 65.74 82.45
ContextCare× 22.35 28.09 24.74 30.66 69.38 85.76
CONTEXTCARE 23.57 30.32 27.26 31.73 73.21 87.36

Table 1: Comparison with baseline methods in accuracy and precision@N (%).

disease clustering.

4.5 Disease Prediction
Results and Analysis. Table 1 shows the accuracy of the
baseline methods as well as our CONTEXTCARE on dis-
ease prediction. Each row of Table 1 represents a model
for disease prediction. Each column stands for a type of re-
source combination used to predict disease. For example,
the column “Diagnosis Network” denotes the use of bipartite
symptom-disease diagnosis network including a large number
of symptom-disease paths and the column “+Co” and “+Ev”
denotes that symptom co-occurrence and disease evolution
are integrated separately besides symptom-disease paths.

From the second column of Table 1, we can see that net-
work embedding methods outperform classification baseline
models, LDA and link prediction models. Symptoms are rep-
resented as one-hot features which are extremely sparse in
classification models, which greatly limits the performance of
disease prediction. LDA is deficient for sparseness. Link pre-
diction models utilize the explicit paths between symptoms
and diseases, which is inflexible to link diseases and symp-
toms thus cannot help to solve the sparsity problem. Network
embedding methods utilize symptom-disease relations to rep-
resent symptoms and diseases onto latent spaces. They are
more flexible to capture latent links between symptoms and
diseases thus benefit disease prediction.

From the last 6 rows of Table 1, we can see that taking into
account of symptom co-occurrence and disease evolution sep-
arately or jointly can consistently improve the performance
of disease prediction for both link prediction models and
network embedding models. However, these resources pro-
duce greater improvement on disease prediction in our CON-
TEXTCARE. CONTEXTCARE increases accuracy by 6.75%
from using symptom co-occurrence network to regularize the
representations of symptoms, which indicates that compact-
ing representations of symptoms benefits disease prediction.
CONTEXTCARE increases accuracy by 3.68% from using
disease evolution network to regularize the representations of
diseases, which indicates that compacting representations of
diseases improves disease prediction. When taking these two
regularization terms, our CONTEXTCARE increases accura-
cy by 8.16% in total. Essentially, compacting symptoms and
diseases are both ways to alleviate the sparsity of symptom-
disease links. The results demonstrate that CONTEXTCARE
successfully alleviate the issue of sparseness and improve the

performance of prediction by integrating networks.
The above observation shows that: 1) our new idea of us-

ing additional homogeneous networks as contexts works well
for all the ways to make predictions; 2) the particular embed-
ding method CONTEXTCARE works better than other meth-
ods, showing that embedding-based approach is better be-
cause they are flexible to capture latent links in the diagnosis
network; 3) our CONTEXTCARE is more effective in alleviat-
ing the sparseness of the diagnosis network by taking symp-
tom co-occurrence network and disease evolution network to
regularize the representations of diseases and symptoms, thus
obtain the best results.

Effect of α and β in CONTEXTCARE. We tune the hy-
perparameter α and β of CONTEXTCARE on the validation
set. We randomly assign a value from (0:0.5:1) to α and got
the β which achieve the best accuracy, then conduct the same
on β. Then we proceed to iteratively find best α and β. The
Figure 3(a) shows the effect of α and β to the performance.

Effect of threshold τ in R1 (GSS ). We investigate how
the threshold of the frequency of the symptom-symptom
co-occurrence affects the performance of CONTEXTCARE
for disease prediction. We vary the threshold value of the
symptom-symptom co-occurrence from 1 to 10, increased by
1. Results of the effect of threshold on disease prediction on
our validation set are given in Figure 3(b). We can see that
the best threshold configuration is 3 and greater or less than 3
will cause a worse performance.

4.6 Disease Category Prediction
Given symptoms, predicting specific disease from 1,066 dis-
eases is a difficult task. The reason is that similar diseases
tend to share similar symptoms, such as “gastric ulcer” and
“gastritis”. However, we will not fall into the unconsidered
differences between “gastric ulcer” and “gastritis” in symp-
toms if we just predict the category of disease instead of spe-
cific disease because they are both diseases of the “digestive
system” according to ICD-10. Predicting the category of dis-
ease is valuable because of the following two scenarios. First,
it is necessary to early determine the department that a pa-
tient should make an appointment with. Second, doctors and
experts can provide quick consulting if they have the correct
category of the potential disease in advance. Figure 4 shows
the results that LSHM is considerable for application but still
not as good as our CONTEXTCARE which stands out from all
baseline methods in disease category prediction.
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Figure 3: (a) Effect of α and β in CONTEXTCARE. (b) Effect of
threshold τ in R1 (G

SS )

4.7 Disease Clustering
This experiment is to test the effectiveness of the learned
disease embeddings in clustering similar diseases. We uti-
lize classical k-means [Hartigan and Wong, 1979] with ran-
dom initialization to cluster the 1,066 diseases and evalu-
ate the clustering performance with Rand index (RI) [Rand,
1971]. Note that we follow the disease categories in ICD-
10, i.e., 1,066 diseases in our dataset are assigned to 9 cate-
gories. These labeled diseases are taken as the ground truth
to verify whether diseases in the same category of ICD-
10 are represented to be much closer than diseases belong-
ing to different categories. From the experiment, LSHM get-
s 79.23%, ContextCare× gets 88.09% and CONTEXTCARE
gets 89.14%. It is clear that our proposed CONTEXTCARE
performs the best. The effectiveness of our CONTEXTCARE
in clustering diseases is a very important reason that we
achieve the better disease prediction and disease category pre-
diction. The reason is that CONTEXTCARE makes the repre-
sentations of diseases with few supports of symptoms much
closer to its similar diseases with rich supports of symptom-
s, and consequently improves the performance of predicting
disease with few supports of symptoms.

5 Related Work
Disease prediction. There are several studies working on dis-
ease prediction based on rich electronic health record (EHR)
with different methods, such as [Sun et al., 2012; Wang et
al., 2014a; Choi et al., 2015; Wang et al., 2014b]. Disease
prediction based on EHR requires relatively long records of
a patient for generating good results. However, EHR is ex-
pensive for both patients and researchers. More importantly,
there are large of amount of users want to check their med-
ical condition with narrative symptoms online. Our research
emphasizes on mitigating the sparsity between symptoms and
diseases thus obtains better results on disease prediction with
narrative symptoms only.

EHR-based phenotyping is a process to map raw EHR da-
ta into meaningful medical concepts, learning medically rel-
evant characteristics of the data [Denny, 2012], and is impor-
tant for supporting genome-wide association studies [Hripc-
sak and Albers, 2013]. Phenotyping can be viewed as a for-
m of dimensionality reduction, where each phenotype form-
s a latent space. The well-established Latent Dirichlet Allo-
cation (LDA) model [Blei et al., 2003] has been applied to
get phenotypes for diagnosis code prediction [Perotte et al.,
2011] and disease progression modeling [Wang et al., 2014b].
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Figure 4: Comparison with baseline methods on disease category
prediction in accuracy (%).

However, our goal is to predict disease with informal symp-
toms for orienting patient who might want to get guidance
from online medical QA systems, search engines and online
medical forums. Therefore, the big challenge is the sparsity
which comes from textual symptoms with informal expres-
sions. Phenotyping uses clean structured EHR rather than the
noisy online QA data from medical forums, thus much less
sparsity than that in our task. LDA which essentially leverage
the high frequent co-occurrence in data can hardly deal with
the serious sparseness of narrative symptoms.

Network mining and analysis is also a related topic as
we can formulate our problem as link prediction in disease-
symptom networks. Most of the existing studies [Adamic
and Adar, 2003; Jeh and Widom, 2003; Sun et al., 2011;
Shi et al., 2014] predict links directly rely on existed links
in networks, and these methods are not effective for our prob-
lem because disease-symptom networks are very sparse. As
shown in experiments, our method outperforms state-of-the-
art method in this line. In recent years, a number of embed-
ding methods have been proposed, which learn distributed
representations of nodes and can better handle sparsity prob-
lem. However, most of these studies focus on homogeneous
networks, and they do not exploit contextual links among ho-
mogeneous nodes to alleviate sparsity problem, such as [Per-
ozzi et al., 2014], [Bordes et al., 2013], [Tang et al., 2015]
and [Zhao et al., 2017]. LSHM [Jacob et al., 2014] is de-
signed for heterogeneous networks, but it doesn’t focus on
addressing sparsity problem, and our method outperforms L-
SHM significantly on disease prediction (see Table 1).

6 Conclusions

In order to leverage the large amounts of medical forum data
and heath related query logs to orient patient online and assist
professional clinical checkup offline, we proposed a general
new idea of using the symptom-symptom and disease-disease
networks to bridge the gap between disease and symptoms
and then detach it from the specific way of implementing the
idea using network embedding. Specifically, on the one hand,
we treat the contextual information of symptom as a con-
straint on representations of symptoms. On the other hand,
we treat the contextual information of disease as a constraint
on representations of disease. By encoding the above con-
textual information, our CONTEXTCARE effectively alleviate
the sparseness of the symptom-disease diagnosis network.
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